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Preface

Physical and natural phenomena depend on a complex array of factors. The sociologist 
or psychologist who studies group behavior, the economist who endeavors to under-
stand the vagaries of a nation’s employment cycles, the physicist who observes the 
trajectory of a particle or planet, or indeed anyone who seeks to understand geometry 
in two, three, or more dimensions recognizes the need to analyze changing quantities 
that depend on more than a single variable. Vector calculus is the essential mathemati-
cal tool for such analysis. Moreover, it is an exciting and beautiful subject in its own 
right, a true adventure in many dimensions.

The only technical prerequisite for this text, which is intended for a sophomore- 
level course in multivariable calculus, is a standard course in the calculus of functions 
of one variable. In particular, the necessary matrix arithmetic and algebra (not linear 
algebra) are developed as needed. Although the mathematical background assumed is 
not exceptional, the reader will still be challenged in places.

Our objectives in writing the book are simple ones: to develop in students a sound 
conceptual grasp of vector calculus and to help them begin the transition from first-
year calculus to more advanced technical mathematics. We believe that the first goal 
can be met, at least in part, through the use of vector and matrix notation, so that many 
results, especially those of differential calculus, can be stated with reasonable levels of 
clarity and generality. Properly described, results in the calculus of several variables 
can look quite similar to those of the calculus of one variable. Reasoning by analogy 
will thus be an important pedagogical tool. We also believe that a conceptual under-
standing of mathematics can be obtained through the development of a good geometric 
intuition. Although many results are stated in the case of n variables (where n is arbi-
trary), we recognize that the most important and motivational examples usually arise 
for functions of two and three variables, so these concrete and visual situations are 
emphasized to explicate the general theory. Vector calculus is in many ways an ideal 
subject for students to begin exploration of the interrelations among analysis, geometry, 
and matrix algebra.

Multivariable calculus, for many students, represents the beginning of significant 
mathematical maturation. Consequently, we have written a rather expansive text so that 
they can see that there is a story behind the results, techniques, and examples—that the 
subject coheres and that this coherence is important for problem solving. To indicate 
some of the power of the methods introduced, a number of topics, not always discussed 
very fully in a first multivariable calculus course, are treated here in some detail:

 • an early introduction of cylindrical and spherical coordinates (§1.7);

 • the use of vector techniques to derive Kepler’s laws of planetary motion (§3.1);

 • the elementary differential geometry of curves in R3, including discussion of cur-
vature, torsion, and the Frenet–Serret formulas for the moving frame (§3.2);

 • Taylor’s formula for functions of several variables (§4.1);

 • the use of the Hessian matrix to determine the nature (as local extrema) of critical 
points of functions of n variables (§4.2 and §4.3);

 • an extended discussion of the change of variables formula in double and triple 
integrals (§5.5);

 • applications of vector analysis to physics (§7.4);

 • an introduction to differential forms and the generalized Stokes’s theorem (Chapter 8).
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Included are a number of proofs of important results. The more technical proofs 
are collected as addenda at the ends of the appropriate sections so as not to disrupt the 
main conceptual flow and to allow for greater flexibility of use by the instructor and 
student. Nonetheless, some proofs (or sketches of proofs) embody such central ideas 
that they are included in the main body of the text.

New in the Fifth Edition
We have retained the overall structure and tone of prior editions. New features in this 
edition include the following:

 • NEW: For the first time, this text is available as a Pearson eText, featuring a num-
ber of interactive GeoGebra applets.

 • clarifications, new examples, and new exercises throughout the text;

 • new derivations of the orthogonal projection formula (§1.3) and the Cauchy–
Schwarz inequality (§1.6);

 • a description of the geometric interpretation of second-order partial derivatives (§2.4);

 • a description of the interpretation of the Lagrange multiplier (§4.3);

 • new terminology in Chapter 5 to describe elementary regions of integration, and 
more examples of setting up double and triple integrals;

 • a new subsection in §5.6 on probability as an application of multiple integrals, and 
new miscellaneous exercises in Chapter 5 on expected value;

 • new examples illustrating interesting uses of Green’s theorem (§6.2);

 • new miscellaneous exercises in Chapters 1 and 4 for readers more familiar with 
linear algebra.

 • Authors’ DEI statement: We conducted an external review of the text’s content to 
determine how it could be improved to address issues related to diversity, equity, 
and inclusion. The results of that review informed the revision.

How to Use This Book
There is more material in this book than can be covered comfortably during a single 
semester. Hence, the instructor will wish to eliminate some topics or subtopics—or to 
abbreviate the rather leisurely presentations of limits and differentiability. Since some 
instructors may find themselves without the time to treat surface integrals in detail, we 
have separated all material concerning parametrized surfaces, surface integrals, and 
Stokes’s and Gauss’s theorems (Chapter 7) from that concerning line integrals and 
Green’s theorem (Chapter 6). In particular, in a one-semester course for students hav-
ing little or no experience with vectors or matrices, instructors can probably expect to 
cover most of the material in Chapters 1–6, although no doubt it will be necessary to 
omit some of the optional subsections and to downplay many of the proofs of results. 
A rough outline for such a course, allowing for some instructor discretion, could be the 
following:

Chapter 1 8–9 lectures
Chapter 2 9 lectures
Chapter 3 4–5 lectures
Chapter 4 5–6 lectures
Chapter 5 8 lectures
Chapter 6      4 lectures
  38–41 lectures



If students have a richer background (so that much of the material in Chapter 1 can be 
left largely to them to read on their own), then it should be possible to treat a good 
portion of Chapter 7 as well. For a two-quarter or two-semester course, it should be 
possible to work through the entire book with reasonable care and rigor, although 
coverage of Chapter 8 should depend on students’ exposure to introductory linear 
algebra, as somewhat more sophistication is assumed there.

The exercises vary from relatively routine computations to more challenging and 
provocative problems, generally (but not invariably) increasing in difficulty within 
each section. In a number of instances, groups of problems serve to introduce supple-
mentary topics or new applications. Each chapter concludes with a set of miscella-
neous exercises that both review and extend the ideas introduced in the chapter.

A word about the use of technology. The text was written without reference to any 
particular computer software or graphing calculator. Most of the exercises can be 
solved by hand, although there is no reason not to turn over some of the more tedious 
calculations to a computer. Those exercises that require a computer for computational 
or graphical purposes are marked with the symbol T  and should be amenable to soft-
ware such as Mathematica®, Maple®, or MATLAB.

Ancillary Materials
An Instructor’s Solutions Manual, containing complete solutions to all of the exer-
cises, is available to course instructors from the Pearson Instructor Resource Center 
(www.pearsonhighered.com/irc), as are many Microsoft® PowerPoint® files and Wolfram 
Mathematica® notebooks that can be adapted for classroom use. The reader can find 
errata for the text and accompanying solutions manuals at the following address:
www.oberlin.edu/math/faculty/colley/VCErrata.html
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To the Student: Some Preliminary Notation

Here are the ideas that you need to keep in mind as you read this book and learn 
vector calculus.

Given two sets A and B, we assume that you are familiar with the notation 
A h  B for the union of A and B—those elements that are in either A or B (or 
both):

A h  B = 5x ∙ x ∈ A or x ∈ B6.
Similarly, A x  B is used to denote the intersection of A and B—those ele-
ments that are in both A and B:

A x  B = 5x ∙ x ∈ A and x ∈ B6.
The notation A ⊆ B, or A ⊂ B, indicates that A is a subset of B (possibly empty 
or equal to B).

One-dimensional space (also called the real line or R) is just a straight 
line. We put real number coordinates on this line by placing negative numbers 
on the left and positive numbers on the right. (See Figure 1.)

Two-dimensional space, denoted R2, is the familiar Cartesian plane. If we 
construct two perpendicular lines (the x- and y-coordinate axes), set the origin 
as the point of intersection of the axes, and establish numerical scales on these 
lines, then we may locate a point in R2 by giving an ordered pair of numbers 
1x, y2, the coordinates of the point. Note that the coordinate axes divide the 
plane into four quadrants. (See Figure 2.)

Three-dimensional space, denoted R3, requires three mutually perpendicu-
lar coordinate axes (called the x-, y- and z-axes) that meet in a single point 
(called the origin) in order to locate an arbitrary point. Analogous to the case of 
R2, if we establish scales on the axes, then we can locate a point in R3 by giving 
an ordered triple of numbers 1x, y, z2 . The coordinate axes divide three- 
dimensional space into eight octants. It takes some practice to get your sense 
of perspective correct when sketching points in R3. (See Figure 3.) Sometimes 
we draw the coordinate axes in R3 in different orientations in order to get a 
better view of things. However, we always maintain the axes in a right-handed 
configuration. This means that if you curl the fingers of your right hand from 
the positive x-axis to the positive y-axis, then your thumb will point along the 
positive z-axis. (See Figure 4.)

Although you need to recall particular techniques and methods from the 
calculus you have already learned, here are some of the more important con-
cepts to keep in mind: Given a function f 1x2, the derivative f ′1x2 is the limit 
(if it exists) of the difference quotient of the function:

f ′1x2 = lim
hS0

 
f 1x + h2 - f 1x2

h
.

The significance of the derivative f ′1x02 is that it measures the slope of the line 
tangent to the graph of f  at the point 1x0, f 1x022. (See Figure 5.) The derivative 
may also be considered to give the instantaneous rate of change of f  at x = x0. 
We also denote the derivative f ′1x2 by d f>dx.

x
0 1 2 3-3 -2 -1

FIGURE 1 The coordinate line R.

1

1

(x0, y0)

x

y

x0

y0

FIGURE 2 The coordinate plane R2.



The definite integral 1b
a  f 1x2 dx of f  on the closed interval 3a, b4 is the 

limit (provided it exists) of the so-called Riemann sums of f :

L
b

a
 f 1x2 dx = lim

all ∆xiS0 a
n

i=1
f 1x*i2∆xi.

Here a = x0 6 x1 6 x2 6g6 xn = b denotes a partition of 3a, b4 into 
subintervals 3xi - 1, xi4, the symbol ∆xi = xi - xi - 1 (the length of the subinter-
val), and x*i  denotes any point in 3xi - 1, xi4. If f 1x2 Ú 0 on 3a, b4, then each 
term f 1x*i 2∆xi in the Riemann sum is the area of a rectangle related to the 
graph of f . The Riemann sum a n

i=1 f 1x*i 2∆xi thus approximates the total 
area under the graph of f  between x = a and x = b. (See Figure 6.)

The definite integral 1b
a  f1x2 dx, if it exists, is taken to represent the area 

under y = f 1x2 between x = a and x = b. (See Figure 7.)
The derivative and the definite integral are connected by an elegant result 

known as the fundamental theorem of calculus. Let f 1x2 be a continuous 

(2, 4, 5)(-1, -2, 2)

1

4
2

2
-1 -1

-2
5

1 y

x

z

FIGURE 3 Three-dimensional 
space R3. Selected points are 
graphed.

y

y

x

xz

z

FIGURE 4 The x-, y-, and z-axes in R3 are always 
drawn in a right-handed configuration.

(x0, f(x0))

x

y

FIGURE 5 The derivative f′1x02 is 
the slope of the tangent line to 
y = f1x2 at 1x0, f 1x022.
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y

xi - 1 xix1 x2 x3a

x*
i

bxn - 1

…

……

…

…

…

FIGURE 6 If f1x2 Ú 0 on 3a, b4, then the Riemann sum 
approximates the area under y = f1x2 by giving the sum 
of areas of rectangles.
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function of one variable, and let F1x2 be such that F′1x2 = f 1x2. (The function 
F is called an antiderivative of f .) Then

1. L
b

a
  f1x2dx = F1b2 - F1a2;

2. 
d

dx L
x

a
  f1t2dt = f1x2.

Finally, the end of an example is denoted by the symbol  and the begin-
ning and end of a proof by the symbol .

x

y

a b

y = f(x)

FIGURE 7 The area under the graph of y = f 1x2 is 

1b
a  f1x2 dx.
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1.1

1 Vectors

Vectors in Two and Three Dimensions

For your study of the calculus of several variables, the notion of a vector is 
fundamental. As is the case for many of the concepts we shall explore, there are 
both algebraic and geometric points of view. You should become comfortable 
with both perspectives in order to solve problems effectively and to build on 
your basic understanding of the subject.

Vectors in R2 and R3: The Algebraic Notion

1.1 Vectors in Two and Three Dimensions

1.2 More About Vectors

1.3 The Dot Product

1.4 The Cross Product

1.5 Equations for Planes; Distance Problems

1.6 Some n-dimensional Geometry

1.7 New Coordinate Systems

True/False Exercises for Chapter 1
Miscellaneous Exercises for Chapter 1

The idea of describing space in terms of coordinates played a major role in the 
development of mathematics and led to the ability to describe planes, spheres,  
and other geometric objects in terms of equations. In this chapter, we develop  
the tools necessary to formulate such equations, with the concept of a vector 
playing a key role. In the accompanying figure for example, we see that  
formulating an equation that characterizes points on a plane in space (such as  
a plane tangent to a sphere) requires only knowledge of a given point on the  
plane and a vector perpendicular to the plane.

z

y

x

P

n

P0

ß

DEFINITION 1.1 A vector in R2 is simply an ordered pair of real numbers. 
That is, a vector in R2 may be written as

1a1, a22 1e.g., 11, 22 or 1p, 1722.
Similarly, a vector in R3 is simply an ordered triple of real numbers. That 
is, a vector in R3 may be written as

1a1, a2, a32 1e.g., 1p, e, 1222.
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To emphasize that we want to consider the pair or triple of numbers as a 
single unit, we will use boldface letters; hence a = 1a1, a22 or a = 1a1, a2, a32 
will be our standard notation for vectors in R2 or R3. Whether we mean that a is 
a vector in R2 or in R3 will be clear from context (or else won’t be important  
to the discussion). When doing handwritten work, it is difficult to “boldface” 
anything, so you’ll want to put an arrow over the letter. Thus, a

u
 will mean the 

same thing as a. Whatever notation you decide to use, it’s important that you 
distinguish the vector a (or a

u
) from the single real number a. To contrast them 

with vectors, we will also refer to single real numbers as scalars.
In order to do anything interesting with vectors, it’s necessary to develop 

some arithmetic operations for working with them. Before doing this, however, 
we need to know when two vectors are equal.

DEFINITION 1.2 Two vectors a = 1a1, a22 and b = 1b1, b22 in R2 are 
equal if their corresponding components are equal, that is, if a1 = b1 and 
a2 = b2. The same definition holds for vectors in R3: a = 1a1, a2, a32 and 
b = 1b1, b2, b32 are equal if their corresponding components are equal, 
that is, if a1 = b1, a2 = b2, and a3 = b3.

EXAMPLE 1  The vectors a = 11, 22 and b = 133, 632 are equal in R2, but 
c = 11, 2, 32 and d = 12, 3, 12 are not equal in R3. 

Next, we discuss the operations of vector addition and scalar multiplication. 
We’ll do this by considering vectors in R3 only; exactly the same remarks will 
hold for vectors in R2 if we simply ignore the last component.

DEFINITION 1.3 (Vector addition) Let a = 1a1, a2, a32 and b = 1b1, b2, b32   
be two vectors in R3. Then the vector sum a + b is the vector in R3 obtained 
via componentwise addition: a + b = 1a1 + b1, a2 + b2, a3 + b32.

EXAMPLE 2  We have 10, 1, 32 + 17, -2, 102 = 17, -1, 132 and (in R2):

11, 12 + 1p, 122 = 11 + p, 1 + 122. 

Properties of vector addition. We have

1. a + b = b + a for all a, b in R3 (commutativity);

2. a + 1b + c2 = 1a + b2 + c for all a, b, c in R3 (associativity);

3. a special vector, denoted 0 (and called the zero vector), with the 
property that a + 0 = a for all a in R3.

These three properties require proofs, which, like most facts involving the 
algebra of vectors, can be obtained by explicitly writing out the vector components. 
For example, for property 1, we have that if

a = 1a1, a2, a32 and b = 1b1, b2, b32,
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then

 a + b = 1a1 + b1, a2 + b2, a3 + b32
 = 1b1 + a1, b2 + a2, b3 + a32
 = b + a,

since real number addition is commutative. For property 3, the “special vector” 
is just the vector whose components are all zero: 0 = 10, 0, 02. It’s then easy to 
check that property 3 holds by writing out components. Similarly for property 2, 
so we leave the details as exercises.

FIGURE 1.1 A vector a ∈ R2 
corresponds to a point in R2.

(a1, a2)

x

y

FIGURE 1.2 A vector a ∈ R3 
corresponds to a point in R3.

(a1, a2, a3)

y

x

z

Properties of scalar multiplication. For all vectors a and b in R3 (or R2) 
and scalars k and l in R, we have

1. 1k + l2a = ka + la (distributivity);

2. k1a + b2 = ka + kb (distributivity);

3. k1la2 = 1kl2a = l1ka2.

It is worth remarking that none of these definitions or properties really 
depends on dimension, that is, on the number of components. Therefore we could 
have introduced the algebraic concept of a vector in Rn as an ordered n-tuple 
1a1, a2, c, an2 of real numbers and defined addition and scalar multiplication 
in a way analogous to what we did for R2 and R3. Think about what such a gen-
eralization means. We will discuss some of the technicalities involved in §1.6.

Vectors in R2 and R3: The Geometric Notion
Although the algebra of vectors is certainly important and you should become 
adept at working algebraically, the formal definitions and properties tend to 
present a rather sterile picture of vectors. A better motivation for the definitions 
just given comes from geometry. We explore this geometry now. First of all, the 
fact that a vector a in R2 is a pair of real numbers 1a1, a22 should make you 
think of the coordinates of a point in R2. (See Figure 1.1.) Similarly, if a ∈ R3, 
then a may be written as 1a1, a2, a32, and this triple of numbers may be thought 
of as the coordinates of a point in R3. (See Figure 1.2.)

All of this is fine, but the results of performing vector addition or scalar 
multiplication don’t have very interesting or meaningful geometric interpreta-
tions in terms of points. As we shall see, it is better to visualize a vector in R2 
or R3 as an arrow that begins at the origin and ends at the point. (See Figure 1.3.) 

DEFINITION 1.4 (Scalar multiplication) Let a = 1a1, a2, a32 be a vector in 
R3 and let k ∈ R be a scalar (real number). Then the scalar product  
ka is the vector in R3 given by multiplying each component of a by k: 
ka = 1ka1, ka2, ka32.

EXAMPLE 3  If a = 12, 0, 122 and k = 7, then ka = 114, 0, 7122. 

The results that follow are not difficult to check—just write out the vector 
components.
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Such a depiction is often referred to as the position vector of the point 1a1, a22 
or 1a1, a2, a32.

If you’ve studied vectors in physics, you have heard them described as 
objects having “magnitude and direction.” Figure 1.3 demonstrates this con-
cept, provided that we take “magnitude” to mean “length of the arrow” and 
“direction” to be the orientation or sense of the arrow. (Note: There is an excep-
tion to this approach, namely, the zero vector. The zero vector just sits at the 
origin, like a point, and has no magnitude and, therefore, an indeterminate 
direction. This exception will not pose much difficulty.) However, in physics, 
one doesn’t demand that all vectors be represented by arrows having their tails 
bound to the origin. One is free to “parallel translate” vectors throughout R2 
and R3. That is, one may represent the vector a = 1a1, a2, a32 by an arrow with 
its tail at the origin 1and its head at 1a1, a2, a322 or with its tail at any other 
point, so long as the length and sense of the arrow are not disturbed. (See 
Figure 1.4.) For example, if we wish to represent a by an arrow with its tail at 
the point 1x1, x2, x32 , then the head of the arrow would be at the point 
1x1 + a1, x2 + a2, x3 + a32. (See Figure 1.5.)

FIGURE 1.3 A vector a in R2 or R3 is represented by an arrow from the 
origin to a.

(a1, a2)

x

y

In R2

a

In R3

(a1, a2, a3)

y

x

z

a

FIGURE 1.4 Each arrow is a 
parallel translate of the position 
vector of the point 1a1, a2, a32 and 
represents the same vector.

(a1, a2, a3)

y

x

z

a
a

a

a

a a

FIGURE 1.5 The vector 
a = 1a1, a2, a32 represented by  
an arrow with tail at the point 
1x1, x2, x32.

(x1, x2, x3)

(x1+a1, x2+a2, x3+a3)
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x
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With this geometric description of vectors, vector addition can be visual-
ized in two ways. The first is often referred to as the “head-to-tail” method for 
adding vectors. Draw the two vectors a and b to be added so that the tail of one 
of the vectors, say b, is at the head of the other. Then the vector sum a + b may 
be represented by an arrow whose tail is at the tail of a and whose head is at the 
head of b. (See Figure 1.6.) Note that it is not immediately obvious that 
a + b = b + a from this construction!

The second way to visualize vector addition is according to the so-called 
parallelogram law: If a and b are nonparallel vectors drawn with their tails 
emanating from the same point, then a + b may be represented by the arrow 
(with its tail at the common initial point of a and b) that runs along a diagonal 
of the parallelogram determined by a and b (Figure 1.7). The parallelogram 
law is completely consistent with the head-to-tail method. To see why, just par-
allel translate b to the opposite side of the parallelogram. Then the diagonal just 
described is the result of adding a and (the translate of) b, using the head-to-tail 
method. (See Figure 1.8.)

We still should check that these geometric constructions agree with our alge-
braic definition. For simplicity, we’ll work in R2. Let a = 1a1, a22 and b = 1b1, b22 
as usual. Then the arrow obtained from the parallelogram law addition of a and b is 
the one whose tail is at the origin O and whose head is at the point P in Figure 1.9. 
If we parallel translate b so that its tail is at the head of a, then it is immediate that 
the coordinates of P must be 1a1 + b1, a2 + b22, as desired.

Scalar multiplication is easier to visualize: The vector ka may be represented 
by an arrow whose length is � k �  times the length of a and whose direction is the 
same as that of a when k 7 0 and the opposite when k 6 0. (See Figure 1.10.)

FIGURE 1.6 The vector a + b 
may be represented by an 
arrow whose tail is at the tail 
of a and whose head is at the 
head of b.

a

a + b b

FIGURE 1.7 The vector 
a + b may be represented 
by the arrow that runs along 
the diagonal of the parallelo-
gram determined by a and b.

a

a + bb

FIGURE 1.8 The equivalence of the 
parallelogram law and the head-to-
tail methods of vector addition.

a

a + bb
b
(translated)

FIGURE 1.9 The point P has coordinates 
1a1 + b1, a2 + b22.

x
A

B

y

b2

a2

a1 b1

P

b
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FIGURE 1.10 Visualization of 
scalar multiplication.
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It is now a simple matter to obtain a geometric depiction of the difference 
between two vectors. (See Figure 1.11.) The difference a - b is nothing more 
than a + 1-b2 (where -b means the scalar -1 times the vector b). The vector 
a - b may be represented by an arrow pointing from the head of b toward the 
head of a; such an arrow is also a diagonal of the parallelogram determined by 
a and b. (As we have seen, the other diagonal can be used to represent a + b.) 
Note in Figure 1.11 that adding b to c = a - b using the “head-to-tail” method 
results in vector a, precisely as one would expect of b + 1a - b2.

Here is a construction that will be useful to us from time to time.

FIGURE 1.11 The 
geometry of vector 
subtraction. The vector c 
is such that b + c = a. 
Hence, c = a - b.

a

b c=a−b

FIGURE 1.12 The displacement 
vector P1P2

¡
, represented by the 

arrow from P1 to P2, is the 
difference between the position 
vectors of these two points.

y

x

z

O

P1

P2

DEFINITION 1.5 Given two points P11x1, y1, z12 and P21x2, y2, z22 in R3, the 
displacement vector from P1 to P2 is

P1P2
¡

= 1x2 - x1, y2 - y1, z2 - z12.

This construction is not hard to understand if we consider Figure 1.12. 

Given the points P1 and P2, draw the corresponding position vectors OP1
¡

 and 

OP2
¡

. Then we see that P1P2
¡

 is precisely OP2
¡ - OP1

¡
. An analogous definition 

may be made for R2.
In your study of the calculus of one variable, you no doubt used the notions 

of derivatives and integrals to look at such physical concepts as velocity, accel-
eration, force, etc. The main drawback of the work you did was that the tech-
niques involved allowed you to study only rectilinear, or straight-line, activity. 
Intuitively, we all understand that motion in the plane or in space is more com-
plicated than straight-line motion. Because vectors possess direction as well as 
magnitude, they are ideally suited for two- and three-dimensional dynamical 
problems.

For example, suppose a particle in space is at the point 1a1, a2, a32 (with 
respect to some appropriate coordinate system). Then it has position vector 
a = 1a1, a2, a32. If the particle travels with constant velocity v = 1y1, y2, y32 
for t seconds, then the particle’s displacement from its original position is tv, 
and its new coordinate position is a + tv. (See Figure 1.13.)

EXAMPLE 4  If a spaceship is at position 1100, 3, 7002 and is traveling with 
velocity 17, -10, 252 (meaning that the ship travels 7 mi/sec in the positive 
x-direction, 10 mi/sec in the negative y-direction, and 25 mi/sec in the positive 
z-direction), then after 20 seconds, the ship will be at position

1100, 3, 7002 + 2017, -10, 252 = 1240, -197, 12002,
and the displacement from the initial position is 1140, -200, 5002. 

EXAMPLE 5  The S.S. Calculus is cruising due south at a rate of 15 knots 
(nautical miles per hour) with respect to still water. However, there is also a 
current of 512 knots southeast. What is the total velocity of the ship? If the 
ship is initially at the origin and a lobster pot is at position 120, -792, will the 
ship collide with the lobster pot?

Since velocities are vectors, the total velocity of the ship is v1 + v2, 
where v1 is the velocity of the ship with respect to still water and v2 is the 

FIGURE 1.13 After t seconds, the 
point starting at a, with velocity v, 
moves to a + tv.

(a1, a2, a3)
y

x

z

a

v

tv
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southeast-pointing velocity of the current. Figure 1.14 makes it fairly straight-
forward to compute these velocities. We have that v1 = 10, -152. Since v2 
points southeastward, its direction must be along the line y = -x. Therefore, 
v2 can be written as v2 = 1y, -y2, where y is a positive real number. By the 
Pythagorean theorem, if the length of v2 is 512, then we must have 
y2 + 1-y22 = 151222 or 2y2 = 50, so that y = 5. Thus, v2 = 15, -52, 
and, hence, the net velocity is

10, -152 + 15, -52 = 15, -202.
After 4 hours, therefore, the ship will be at position

10, 02 + 415, -202 = 120, -802
and thus will miss the lobster pot. 

EXAMPLE 6  The theory behind the venerable martial art of judo is an excel-
lent example of vector addition. If two people, one relatively strong and the 
other relatively weak, have a shoving match, it is clear who will prevail. For 
example, someone pushing one way with 200 lb of force will certainly succeed 
in overpowering another pushing the opposite way with 100 lb of force. Indeed, 
as Figure 1.15 shows, the net force will be 100 lb in the direction in which the 
stronger person is pushing.

FIGURE 1.14 The length of v1 is 
15, and the length of v2 is 512.

x

y

Net velocity

v1 ship
(with respect
to still water)

v2 current

FIGURE 1.15 A relatively strong person pushing with a 
force of 200 lb can quickly subdue a relatively weak one 
pushing with only 100 lb of force.

100 lb 100 lb200 lb
=

FIGURE 1.16 Vector addition in 
judo.

> 200 lb

100 lb
200 lb

Dr. Jigoro Kano, the founder of judo, realized (though he never expressed his 
idea in these terms) that this sort of vector addition favors the strong over the weak. 
However, if weaker participants apply their 100 lb of force in a direction only 
slightly different from that of a stronger one, they will effect a vector sum of length 
large enough to surprise the opponent. (See Figure 1.16.) This is the basis for 
essentially all of the throws of judo and why judo is described as the art of “using a 
person’s strength against oneself.” In fact, the word “judo” means “the way of gen-
tleness” or “the way of giving in.” One “gives in” to the strength of another by 
attempting only to redirect his or her force rather than to oppose it. 

1.1 Exercises

1. Sketch the following vectors in R2:

(a) 12, 12
(b) 13, 32
(c) 1-1, 22

2. Sketch the following vectors in R3:

(a) 11, 2, 32
(b) 1-2, 0, 22
(c) 12, -3, 12

3. Perform the indicated algebraic operations. Express 
your answers in the form of a single vector 
a = 1a1, a22 in R2.

(a) 13, 12 + 1-1, 72
(b) -218, 122
(c) 18, 92 + 31-1, 22
(d) 11, 12 + 512, 62 - 3110, 22
(e) 18, 102 + 3118, -22 - 214, 522
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4. Perform the indicated algebraic operations. Express 
your answers in the form of a single vector 
a = 1a1, a2, a32 in R3.

(a) 12, 1, 22 + 1-3, 9, 72
(b) 1

218, 4, 12 + 215, -7, 142
(c) -2112, 0, 12 - 6112, -4, 122

5. Graph the vectors a = 11, 22, b = 1-2, 52, and 
a + b = 11, 22 + 1-2, 52, using both the parallel-
ogram law and the head-to-tail method.

6. Graph the vectors a = 13, 22 and b = 1-1, 12. Also 
calculate and graph a - b, 12a, and a + 2b.

7. Let A be the point with coordinates 11, 0, 22, let B be 
the point with coordinates 1-3, 3, 12, and let C be 
the point with coordinates 12, 1, 52.
(a) Describe the vectors AB

¡
 and BA

¡
.

(b) Describe the vectors AC
¡

, BC
¡

, and AC
¡ + CB

¡
.

(c) Explain, with pictures, why AC
¡ + CB

¡
= AB

¡
.

8. Graph 11, 2, 12 and 10, -2, 32, and calculate and 
graph 11, 2, 12 + 10, -2, 32 , -111, 2, 12, and 
411, 2, 12.

9. If 1-12, 9, z2 + 1x, 7, -32 = 12, y, 52, what are x, 
y, and z?

10. What is the length (magnitude) of the vector 13, 12? 
(Hint: A diagram will help.)

11. Sketch the vectors a = 11, 22 and b = 15, 102. 
Explain why a and b point in the same direction.

12. Sketch the vectors a = 12, -7, 82 and b = 1-1,
7
2,-42. Explain why a and b point in opposite directions.

13. How would you add the vectors 11, 2, 3, 42  and 
15, -1, 2, 02 in R4? What should 217, 6, -3, 12 be? 
In general, suppose that

a = 1a1, a2, c , an2 and b = 1b1, b2, c , bn2
are two vectors in Rn and k ∈ R is a scalar. Then 
how would you define a + b and ka?

14. Find the displacement vectors from P1 to P2, where P1 
and P2 are the points given. Sketch P1, P2, and P1P2

¡
.

(a) P111, 0, 22, P212, 1, 72
(b) P111, 6, -12, P210, 4, 22
(c) P110, 4, 22, P211, 6, -12
(d) P113, 12, P212, -12

15. Let P112, 5, -1, 62 and P213, 1, -2, 72 be two points 
in R4. How would you define and calculate the dis-
placement vector from P1 to P2? (See Exercise 13.)

16. If A is the point in R3 with coordinates 12, 5, -62 
and the displacement vector from A to a second point 
B is 112, -3, 72, what are the coordinates of B?

17. Suppose that you and your friend are in New York 
talking on cellular phones. You inform each other of 
your own displacement vectors from the Empire 
State Building to your current position. Explain how 
you can use this information to determine the dis-
placement vector from you to your friend.

18. Give the details of the proofs of properties 2 and 3 of 
vector addition given in this section.

19. Prove the properties of scalar multiplication given in 
this section.

20. (a)  If a is a vector in R2 or R3, what is 0a? Prove 
your answer.

(b) If a is a vector in R2 or R3, what is 1a? Prove 
your answer.

21. (a)  Let a = 12, 02 and b = 11, 12. For 0 … s … 1 
and 0 … t … 1, consider the vector x = sa + tb.  
Explain why the vector x lies in the parallelo-
gram determined by a and b. (Hint: It may help 
to draw a picture.)

(b) Now suppose  tha t  a = 12, 2, 12  and 
b = 10, 3, 22. Describe the set of vectors 
5x = sa + tb �0 … s … 1, 0 … t … 16 .

22. Let a = 1a1, a2, a32 and b = 1b1, b2, b32 be two 
nonzero vectors such that b ≠ ka. Use vectors to 
describe the set of points inside the parallelogram 
with vertex P01x0, y0, z02 and whose adjacent sides 
are parallel to a and b and have the same lengths as a 
and b. (See Figure 1.17.) (Hint: If P1x, y, z2 is a point 
in the parallelogram, describe OP

S
, the position vec-

tor of P.)

23. A flea falls onto marked graph paper at the point 
13, 22 . She begins moving from that point with 
velocity vector v = 1-1, -22 (i.e., she moves 1 
graph paper unit per minute in the negative x- 
direction and 2 graph paper units per minute in the 
negative y-direction).

(a) What is the speed of the flea?

FIGURE 1.17 Figure for Exercise 22.
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(b) Where is the flea after 3 minutes?

(c) How long does it take the flea to get to the point 
1-4, -122?

(d) Does the flea reach the point 1-13, -272? Why 
or why not?

24. A plane takes off from an airport with velocity vector 
150, 100, 42. Assume that the units are miles per hour, 
that the positive x-axis points east, and that the positive 
y-axis points north.

(a) How fast is the plane climbing vertically at 
take-off?

(b) Suppose the airport is located at the origin and a 
skyscraper is located 5 miles east and 10 miles 
north of the airport. The skyscraper is 1,250 feet 
tall. When will the plane be directly over the 
building?

(c) When the plane is over the building, how much 
vertical clearance is there?

25. As mentioned in the text, physical forces (e.g., grav-
ity) are quantities possessing both magnitude and 
direction and therefore can be represented by vectors. 
If an object has more than one force acting on it, then 
the resultant (or net) force can be represented by the 
sum of the individual force vectors. Suppose that two 

forces, F1 = 12, 7, -12 and F2 = 13, -2, 52, act on 
an object.

(a) What is the resultant force of F1 and F2?

(b) What force F3 is needed to counteract these 
forces (i.e., so that no net force results and the 
object remains at rest)?

26. A 50 lb sandbag is suspended by two ropes. Suppose 
that a three-dimensional coordinate system is intro-
duced so that the sandbag is at the origin and the 
ropes are anchored at the points 10, -2, 12  and 
10, 2, 12.
(a) Assuming that the force due to gravity points 

parallel to the vector 10, 0, -12, give a vector F 
that describes this gravitational force.

(b) Now, use vectors to describe the forces along 
each of the two ropes. Use symmetry consider-
ations and draw a figure of the situation.

27. A 10 lb weight is suspended in equilibrium by two 
ropes. Assume that the weight is at the point 11, 2, 32 
in a three-dimensional coordinate system, where the 
positive z-axis points straight up, perpendicular to 
the ground, and that the ropes are anchored at the 
points 13, 0, 42 and 10, 3, 52. Give vectors F1 and F2 
that describe the forces along the ropes.

More About Vectors

The Standard Basis Vectors
In R2, the vectors i = 11, 02 and j = 10, 12 play a special notational role. Any 
vector a = 1a1, a22 may be written in terms of i and j via vector addition and 
scalar multiplication:

1a1, a22 = 1a1, 02 + 10, a22 = a111, 02 + a2 10, 12 = a1 i + a2 j.

(It may be easier to follow this argument by reading it in reverse.) Insofar as nota-
tion goes, the preceding work simply establishes that one can write either 1a1, a22 
or a1 i + a2 j to denote the vector a. It’s your choice which notation to use (as long 
as you’re consistent), but the ij-notation is generally useful for emphasizing the 
“vector” nature of a, while the coordinate notation is more useful for emphasizing 
the “point” nature of a (in the sense of a’s role as a possible position vector of a 
point). Geometrically, the significance of the standard basis vectors i and j is that 
an arbitrary vector a ∈ R2 can be decomposed pictorially into appropriate vector 
components along the x- and y-axes, as shown in Figure 1.18.

Exactly the same situation occurs in R3, except that we need three vectors, 
i = 11, 0, 02, j = 10, 1, 02, and k = 10, 0, 12, to form the standard basis. (See 
Figure 1.19.) The same argument as the one just given can be used to show that 
any vector a = 1a1, a2, a32 may also be written as a1 i + a2 j + a3 k. We shall 
use both coordinate and standard basis notation throughout this text.

EXAMPLE 1  We may write the vector 11, -22 as i - 2j and the vector 
17, p, -32 as 7i + pj - 3k. 

1.2




